5 resultados para celecoxib

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topotecan (TPT) is a semisynthetic water-soluble derivative of camptothecin (CPT) used as second-line therapy in patients with metastatic ovarian carcinoma, small cell lung cancer, and other malignancies. However, both doselimiting toxicity and tumor resistance hinder the clinical use of TPT. The mechanisms for resistance to TPT are not fully defined, but increased efflux of the drug by multiple drug transporters including P-glycoprotein (PgP), multidrug resistance associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) from tumor cells has been highly implicated. This study aimed to investigate whether overexpression of human MRP4 rendered resistance to TPT by examining the cytotoxicity profiles using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay and cellular accumulation of TPT in HepG2 cells stably overexpressing MRP4. Two kinds of cell lines, HepG2 with insertion of an empty vector plasmid (V/HepG2), HepG2 cells stably expressing MRP4 (MRP4/HepG2), were exposed to TPT for 4 or 48 hr in the absence or presence of various MRP4 inhibitors including DL-buthionine-(S,R)-sulphoximine (BSO), diclofenac, celecoxib, or MK-571. The intracellular accumulation of TPT and paclitaxel (a PgP substrate) by V/HepG2 and MRP4/HepG2 cells was determined by incubation of TPT with the cells and the amounts of the drug in cells were determined by validated HPLC methods. The study demonstrated that MRP4 conferred a 12.03- and 6.86-fold resistance to TPT in the 4- and 48-hr drug-exposure MTT assay, respectively. BSO, MK-571, celecoxib, or diclofenac sensitised MRP4/HepG2 cells to TPT cytotoxicity and partially reversed MRP4-mediated resistance to TPT. In addition, the accumulation of TPT was significantly reduced in MRP4/HepG2 cells compared to V/HepG2 cells, and one-binding site model was found the best fit for the MRP4-mediated efflux of TPT, with an estimated Km of 1.66 mM and Vmax of 0.341 ng/min/106 cells. Preincubation of MRP4/HepG2 cells with BSO (200 μM) for 24 hr, celecoxib (50 mM), or MK-571 (100 mM) for 2 hr significantly increased the accumulation of TPT over 10 min in MRP4/HepG2 cells by 28.0%, 37.3% and 32.5% (P < 0.05), respectively. By contrast, there was no significant difference in intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells over 120 min. MRP4 also rendered resistance to adefovir dipivoxil (bis-POMPMEA) and methotrexate, two reported MRP4 substrates. MRP4 did not exhibit any significant resistance to other model drugs including vinblastine, vincristine, etoposide, carboplatin, cyclosporine and paclitaxel in both long (48 hr) and short (4 hr) drug-exposure MTT assays. These findings indicate that MRP4 confers resistance to TPT and TPT is the substrate for MRP4. Further studies are needed to explore the role of MRP4 in resistance to, toxicity and pharmacokinetics of TPT in cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose The multidrug resistance associated protein (MRP) 4 is a member of the adenosine triphosphate (ATP)-binding cassette transporter family. Camptothecins (CPTs) have shown substantial anticancer activity against a broad spectrum of tumors by inhibiting DNA topoisomerase I, but tumor resistance is one of the major reasons for therapeutic failure. P-glycoprotein, breast cancer resistance protein, MRP1, and MRP2 have been implicated in resistance to various CPTs including CPT-11 (irinotecan), SN-38 (the active metabolite of CPT-11), and topotecan. In this study, we explored the resistance profiles and intracellular accumulation of a panel of CPTs including CPT, CPT-11, SN-38, rubitecan, and 10-hydroxy-CPT (10-OH-CPT) in HepG2 cells with stably overexpressed human MRP4. Other anticancer agents such as paclitaxel, cyclophosphamide, and carboplatin were also included.
Methods HepG2 cells were transfected with an empty vehicle plasmid (V/HepG2) or human MRP4 (MRP4/HepG2). The resistance profiles of test drugs in exponentially growing V/HepG2 and MRP4/HepG2 cells were examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay with 4 or 48 h exposure time of the test drug in the absence or presence of various MRP4 inhibitors. The accumulation of CPT-11, SN-38, and paclitaxel by V/HepG2 and MRP4/HepG2 cells was determined by validated high-performance liquid chromatography methods.
Results Based on the resistance folds from the MTT assay with 48 h exposure time of the test drug, MRP4 conferred resistance to CPTs tested in the order 10-OH-CPT (14.21) > SN-38 carboxylate (9.70) > rubitecan (9.06) > SN-38 lactone (8.91) > CPT lactone (7.33) > CPT-11 lactone (5.64) > CPT carboxylate (4.30) > CPT-11 carboxylate (2.68). Overall, overexpression of MRP4 increased the IC50 values 1.78- to 14.21-fold for various CPTs in lactone or carboxylate form. The resistance of MRP4 to various CPTs tested was significantly reversed in the presence of dl-buthionine-(S,R)-sulfoximine (BSO, a γ-glutamylcysteine synthetase inhibitor), MK571, celecoxib, or diclofenac (all MRP4 inhibitors). In addition, the accumulation of CPT-11 and SN-38 over 120 min in MRP4/HepG2 cells was significantly reduced compared to V/HepG2 cells, whereas the addition of celecoxib, MK571, or BSO significantly increased their accumulation in MRP4/HepG2 cells. There was no significant difference in the intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells, indicating that P-glycoprotein was not involved in the observed resistance to CPTs in this study. MRP4 also conferred resistance to cyclophosphamide and this was partially reversed by BSO. However, MRP4 did not increase resistance to paclitaxel, carboplatin, etoposide (VP-16), 5-fluorouracil, and cyclosporine.
Conclusions Human MRP4 rendered significant resistance to cyclophosphamide, CPT, CPT-11, SN-38, rubitecan, and 10-OH-CPT. CPT-11 and SN-38 are substrates for MRP4. Further studies are needed to explore the role of MRP4 in resistance, toxicity, and pharmacokinetics of CPTs and cyclophosphamide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lumiracoxib (Prexige©) 200 mg was listed in Australia’s Pharmaceutical Benefits Scheme (PBS) schedules on 01 August 2006. The listing was intended as a cost-minimisation strategy, as lumiracoxib 200 mg was deemed equivalent in therapeutic effect to celecoxib (Celebrex©) 200 mg, and was available at a lower cost. By the time of listing on the PBS, a safety re-evaluation of the recommended daily dose of lumiracoxib was being considered in other national regulatory jurisdictions. Within 3 months of listing, the manufacturer revised the recommended dosage to half that of the PBS-listed dosage. However, the PBS listing was neither revoked nor modified. At the time of listing on the PBS, lumiracoxib was known to be 17 times as biochemically selective in inhibiting the COX-2 isoform as celecoxib, and twice as selective as rofecoxib, already withdrawn for safety reasons. Safety concerns had already been raised about adverse hepatic outcomes on daily doses of lumiracoxib 200 mg. Communication of information about the risk potential of lumiracoxib was inadequate. Economic and political considerations were prioritised over patient safety, and lumiracoxib 200 mg remained available via the PBS until 10 August 2007, when it was withdrawn for safety reasons following cases of hepatic morbidity and mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depression is a complex progressive disorder accompanied by activation of inflammatory and Th-1 driven pathways, oxidative and nitrosative stress (O&NS), lowered antioxidant levels, mitochondrial dysfunctions, neuroprogression and increased bacterial translocation. In depression, activation of immuno-inflammatory pathways is associated with an increased risk for cardio-vascular disorder (CVD). Because of the inflammatory component, the use of cyclooxygenase 2 (COX-2) inhibitors, such as celecoxib, has been advocated to treat depression. Electronic databases, i.e. PUBMED, Scopus and Google Scholar were used as sources for this selective review on the effects of COX-2 inhibitors aggravating the abovementioned pathways. COX-2 inhibitors may induce neuroinflammation, exacerbate Th1 driven responses, increase lipid peroxidation, decrease the levels of key antioxidants, damage mitochondria and aggravate neuroprogression. COX-2 inhibitors may aggravate bacterial translocation and CVD through Th1-driven mechanisms. COX-2 inhibitors may aggravate the pathophysiology of depression. Since Th1 and O&NS pathways are risk factors for CVD, the use of COX-2 inhibitors may further aggravate the increased risk for CVD in depression. Selectively targeting COX-2 may not be a viable therapeutic approach to treat depression. Multi-targeting of the different pathways that play a role in depression is more likely to yield good treatment results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While statins target many of the pathways to neuroprogression in schizophrenia, the safety and efficacy of statins for treating schizophrenia has never been examined. This is an 8-week randomized double blind controlled clinical trial examining the efficacy and safety of adjunctive lovastatin (20 mg/day) treatment or placebo for people with schizophrenia. The baseline characteristics of the two groups were not different. Endpoint changes in Positive and Negative Syndrome Scale (PANSS) total and subscale scores did not differ between the two groups. However there was a significant difference between the doses of risperidone used in the two groups. The mean dose in the lovastatin and placebo groups were 4.8(1.8) and 3.4(1.4) mg/day, respectively (P<.03). No serious adverse events were reported. Slowness of movements, muscle rigidity, increased appetite, and decreased energy were the most common adverse effects, and these rates did not differ between the two groups. This study failed to demonstrate a benefit of lovastatin on symptoms of schizophrenia. This combination was well tolerated. However, a higher dosage of risperidone was used for treating the disorder in those taking concomitant lovastatin compared to placebo.